Digital remote display for Flow Meter DM /DE

Universal meter UZ

Indication of the quantity consumed in m³

Features
- LED-Display 14.2mm red
- Indicating range -99999 ... 999999
- 0 ... 3 Decimal points programmable
- Up- and down counter function
- 2 digital inputs for summation and subtraction
- Integrated transmitter-supply 24 / 8V DC
- Auto-reset or external reset
- 2 preset outputs SPDT relay (optional),
- Display conversion programmable
- Isolated analog output
- 0/4 ... 20mA and 0/2 ... 10V DC (optional)
- Front protection IP65

General
The universal meter UZ has been designed for process engineering and automation environments. All parameters can be programmed. The counter can be used wherever quantities or processes must be measured, displayed and controlled or regulated.

Short information
Programming Parameters are programmed via front-side membrane keypad
Transmitter-supply The integrated transmitter supply allows direct connection of pnp initiators, light barriers, mechanical switch contacts, proximity switches, rotary encoder (24V DC) and Namur initiators (8V DC).
Input prescaler An input prescaler has separate programming function for input A and B.
Display conversion A separate programmable divisor and factor makes the display adaptable as required.
Preset outputs Preset outputs can be programmed as continuous contact or pulse contact. Switching performance is programmable as minimum or maximum function.
Analog output Proportional to input pulses an isolated analog output signal 0 ... 20mA / 0 ... 10V DC or 4 ... 20mA / 2 ... 10V DC can be generated. Start value and end value are programmable. Output changed automatically from current signal to voltage signal, depending on burden.
Technical Data

Power supply
- Supply voltage: 230V AC ±10%
- Power consumption: max. 3.5VA, with analog output 5VA
- Operating temperature: -10 ... +55°C
- Rated voltage: 250V~ acc. to VDE 0110 Degree of pollution 2, over-voltage category III
- Test voltage: 4kV-, between input / output / supply voltage

Input
- pnp-input: Ri = 6,3kΩ switching level: < 4V low; > 8,5V high; hysteresis > 2,5V, max. 35V DC
- Namur input: Ri ca 1kΩ (<4mA) switching level: < 1mA low; >2,2mA high; hysteresis > 0,5mA max. 35V DC
- Counting frequenc max.: Input A or B = 15kHz, A and B together = 6kHz, switch contact = 30Hz, 2-channel rotary pulse generator = 8kHz
- Min. pulse width: 100µs when reset; 20ms when programming another preselection
- Transmitter-supply: Ri ca 1kΩ (<4mA) switching level: < 1mA low; >2,2mA high; hysteresis > 0,5mA max. 35V DC
- Input A or B = 15kHz, A and B together = 6kHz, switch contact = 30Hz, 2-channel rotary pulse generator = 8kHz
- Min. pulse width: 100µs when reset; 20ms when programming another preselection
- Transmitter-supply: 8V DC controlled (Namur), 24V DC (pnp), Ri abt. 150Ω

Display
- LED red, 14,2mm
- Additional display: LED 2- digit red, 7mm (parameter - and output indicator)

Output
- Relay: SPDT <250V AC<250VA<2A, <300V DC<50W<2A
- Analog output: 0/4 ... 20mA burden ≤ 500Ω; 0/2 ... 10V burden >500Ω, isolated
- Accuracy: 0,1%; TK 0,01%/K
- Automatic output changing (burden dependent)

Panel case
- DIN 96x48mm, material PA6-GF; UL94V-0
- Dimensions: Front 96x48mm, mounting depth 100mm
- Weight: max. 390g
- Electrical connection: Clamp terminals, 2mm² single wire, 1mm² flexible wire, AWG14
- Protection: Front IP65, terminals IP20, finger safe acc. BGV A2 (oldVBG4)
Terminal strip B (varies with version)
2 preselect (alarm) outputs

Terminal strip C (varies with version)
Analog output

Terminal strip D Supply voltage
Controls and indicators

Description
Operation of the device is arranged in 2 levels. The requested parameter can be called by \(\uparrow \) button. Selection within a parameter or entering data, use buttons \(\downarrow \) and \(\uparrow \). Parameters are stored zero-voltage safe in the EEPROM.

Button combinations:

\(\uparrow + \downarrow \) one parameter back.

\(\uparrow + \uparrow \) setting parameter to zero or minimum value.

After turn on the supply voltage, the device is working in the Working level. Set points of preset outputs can be selected.

Activating the \(\uparrow \) button for more than 2 seconds, the program is jumping into the Configuration level. Now all parameters, defining the function of the counter can be programmed. These maybe the measuring input, input configuration, conversion of the displayed value, switching performance of preset outputs and the analog output signal.

After finishing the configuration or when longer than 2 minutes no button was pushed, the program jumps back to the working level. Leaving the configuration level is possible at any time when pushing the button \(\uparrow \) for 2 seconds.

Error messages:

PE Reading this message in the parameter display, parameter failure has been occurred. The display flashes. When pushing one of the buttons the error code will be deleted and the counter is running with factory settings. Configuration and function of the counter must be checked. If error occurs again, please ship the counter to factory for repair service.

Loc Programming lock active \(\Rightarrow \) see configuration page 9

of Overflow \(\Rightarrow \) also see page 11
Start-up note:
Before the device can be used, it must be configured for the intended use.
⇒ see page 6

Notes to representation

Parameter only shown when configurated

Parameter is only shown when installed in the device (see order code)

Note: All parameters can be called if they are not blocked by other programmed parameters and if they are available. Factory settings are shown in [].

Working level
Configuration Level

Function: input configuration A and B; count direction

- R - b = A up, B down
- R - b db = A up, B down, for switching contacts
- R u - b = A up, B up
- R u - b db = A up, B up, for switching contacts
- G 0° 1d = rotary encoder
 Selection with buttons \(\square \) and \(\square \).

Prescaler input A
Setting possible from \(\ldots \ldots 9999 \) digit with buttons \(\square \) and \(\square \).
(Only every \(n \)th pulse is counted)

Prescaler input B
Setting possible from \(\ldots \ldots 9999 \) digit with buttons \(\square \) and \(\square \).
(Only every \(n \)th pulse is counted)

Transmitter supply / input level

- \(U = 24 \) = 24V DC for pro-initiators
- \(U = 8 \) = 8V DC for Namur-initiators
 (*with ext. 9V supply also suitable for TTL signals)
- \(U E S E B \) = only for factory settings.
 Selection with buttons \(\square \) and \(\square \).

Count value for power-on

- \(E S E B \) = load start value \((S t) \) (see page 7)
- \(E S E B \) = count value is stored if power fails
 Selection with buttons \(\square \) and \(\square \).

Decimal point position

- \(D P \) = .000
- \(D P \) = .00
- \(D P \) = .0
- \(D P \) = .
 Selection with buttons \(\square \) and \(\square \).

continue page 7
Universal meter UZ

Button	Display	Description	[Factory settings]
		Divisor for display Setting possible from \(\frac{1}{...} \) 9999 digit, with buttons \(\Delta \) and \(\nabla \). \(\Rightarrow \) also see page 11	
		Factor for display Setting possible from \(\frac{1}{...} \) 9999 digit, with buttons \(\Delta \) and \(\nabla \). \(\Rightarrow \) also see page 11	
		Start value Count value after reset Setting possible from \(-99999 \) ... 999999 digit, with buttons \(\Delta \) and \(\nabla \).	
	34	5\(\xi \)	[\(\xi \)]
		End value \(\xi \): the counter operates as totalizing counter in the full range range. When reaching the value \(-99999 \) or 999999 the counter stops. In the case of overflow the display flashes.	
		\(\psi \): the counter operates as ring counter between start value 5\(\xi \) and end value \(\xi \) (see following parameter) Selection with buttons \(\Delta \) and \(\nabla \).	
	3420	999999	Count value for internal reset Setting possible from \(-99999 \) ... 999999 digit with buttons \(\Delta \) and \(\nabla \).
		Note: Parameter is only displayed if \(\xi = \psi \) and occupied setpoint preset of output A1.	

continue page 8
Button	Display	Description
	OFF	Switching performance preselect (alarm) output A1
OFF = no output
ON (min) = continuous contact: on-off
ON (max) = continuous contact: off-on
ON (max) = pulse contact: off-on-off
ON (min) = pulse contact: on-off-on
Selection with buttons ▲ and ▼.

| | 2125 | Setpoint output A1
Setting possible from -99999 ... 999999 digit, with buttons ▲ and ▼.

| | 100 | Switching time output A1 [sec].
Setting possible from 0.01 ... 99.99 s, with buttons ▲ and ▼.

| | **OFF** | Switching performance of preselect (alarm) output A2
OFF = no output
ON (min) = continuous contact: on-off
ON (max) = continuous contact: off-on
ON (max) = pulse contact: off-on-off
ON (min) = pulse contact: on-off-on
Selection with buttons ▲ and ▼.

| | 125 | Setpoint output A2
Setting possible from -99999 ... 999999 digit, with buttons ▲ and ▼.

| | 100 | Switching time output A2 [sec].
Setting possible from 0.01 ... 99.99 s, with buttons ▲ and ▼.

Note: Switching performance, setpoint and switching time of the preselect outputs A1 to A4 are identical.
Universal meter UZ

Connection diagramms for flow meter DM/DE

- 9 -
Example of programming for Flow Meter DM/DE

Connection on pulser E1 or E 200

Table 1

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Designation / Display</th>
<th>Input</th>
</tr>
</thead>
<tbody>
<tr>
<td>Input configuration</td>
<td>FU</td>
<td>A-b or A u. B</td>
</tr>
<tr>
<td>Prescaler input A</td>
<td>dA</td>
<td>1</td>
</tr>
<tr>
<td>Prescaler input B</td>
<td>dB</td>
<td>1</td>
</tr>
<tr>
<td>Transmitter supply</td>
<td>In</td>
<td>U = 24 V or U = 8 V for Sensor of Namur (E200)</td>
</tr>
<tr>
<td>Count value for power-on</td>
<td>Po</td>
<td>rESTor</td>
</tr>
<tr>
<td>Decimal point position</td>
<td>dp</td>
<td>0</td>
</tr>
<tr>
<td>Divisor for display</td>
<td>d</td>
<td>1 at E1 (E200 see Table 2)</td>
</tr>
<tr>
<td>Factor for display</td>
<td>F</td>
<td>1 at E1 (E200 see Table 2)</td>
</tr>
<tr>
<td>Start value</td>
<td>St.</td>
<td>0</td>
</tr>
<tr>
<td>End value</td>
<td>En</td>
<td>off</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Designation / Display</th>
</tr>
</thead>
<tbody>
<tr>
<td>Switching performance preselect (alarm) output A1</td>
<td>AI</td>
</tr>
<tr>
<td>Setpoint output A1</td>
<td>AI.</td>
</tr>
<tr>
<td>Switching performance preselect (alarm) output A2</td>
<td>A2.</td>
</tr>
<tr>
<td>Setpoint output A2</td>
<td>A2.</td>
</tr>
<tr>
<td>Analog output</td>
<td>Ao</td>
</tr>
<tr>
<td>Start value for the analog output</td>
<td>AS</td>
</tr>
<tr>
<td>End value for the analog output</td>
<td>AE</td>
</tr>
</tbody>
</table>

Program lockout | LC | as required

Differing from the above table, by connection on pulse generator E200 of the flow meter, are input following parameter:

Table 2

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Designation / Display</th>
<th>cp-value of the flow meter (Imp./m³)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>5000</td>
</tr>
<tr>
<td>Prescaler input A</td>
<td>dA</td>
<td>1</td>
</tr>
<tr>
<td>Prescaler input B</td>
<td>dB</td>
<td>1</td>
</tr>
<tr>
<td>Divisor for display</td>
<td>d</td>
<td>5000</td>
</tr>
<tr>
<td>Factor for display</td>
<td>F</td>
<td>1</td>
</tr>
</tbody>
</table>

Display adjustment from universal meter and flow meter

Procedure:
For the configuration of the universal counter, you have to put at parameter „Start value“ (page 7) the present value of the flow meter.
If the configuration is finished, the clamps 4 and 6 on terminal strip A, are interconnected transient. After the reset, the input value appears on the display.
Display conversion

For some settings of the divisor \(d \) and factor \(f \) it is possible that the meter will not cover the possible display range of the unit (0-999999). The following formula relationship applies:

\[
\text{Maximum display range} = \frac{8 \times 10^6 \times \text{factor (F)}}{\text{Divisor (d)}} \quad \text{should be} \quad > 999999
\]

If this check produces a value of less than 999999, the meter will only be able to count to this display value. The problem can be avoided if the scaler \(d_a \) or \(d_b \) is included in the configuration.

Example:
In a measuring device the flow rate is to be recorded in m³, and displayed without any decimal places. The sensor used supplies one pulse every 0.084 m³. To program the display conversion this sensor constant must first be converted into a fraction. This is as follows:

\[
\text{Sensor contact} = \frac{\text{Factor (F)} = 84}{\text{Divisor (d)} = 1000}
\]

Therefore the value 84 must be entered for the factor \(F \) and 1000 for the divisor \(d \). However, if we now check the maximum display range, we obtain the following:

\[
\text{Maximum display range} = \frac{8 \times 10^6 \times 84}{1000} = 672000
\]

This means that the meter can only display up to a maximum value of 672000 at which point it will stop. If this is inadequate it is possible to transfer part of the divisor to the scaler \(d_a \) or \(d_b \). In this case, if the divisor \(d \) were to be reduced to 500 the maximum display range would be \(> 999999 \), so that the unit could be used to the full extent.

The procedure for this is as follows:

The divisor \(d \) is set to 500 and the scaler \(d_a \) or \(d_b \) (depending on which input is used) is set to 2.

These settings produce the following:

\[
\text{Maximum display range} = \frac{8 \times 10^6 \times 84}{500} = 1344000
\]

This means that the display conversion is now configured perfectly for this application.

We reserve the right to make technical modifications in the interests of progress.